Mineralocorticoid and glucocorticoid receptors in the brain. Implications for ion permeability and transmitter systems.
نویسندگان
چکیده
In this review we have argued that corticosteroid hormones represent an endocrine signal that can influence neuronal communication. The steroids bind to intracellular receptors in the brain, resulting in slow effects that involve gene transcription, but they may also evoke rapid effects via membrane receptors. The signal carried by the corticosteroids is therefore divergent with respect to the dimension of space and time. Within the rat brain, at least two intracellular receptor subtypes, i.e. MRs and GRs, bind corticosterone. The affinity, density and localization of the MRs is different from the GRs, although the actual properties may vary somewhat depending on the condition of the animal. In general, due to the difference in affinity, low corticosteroid levels result in a predominant MR occupation, while higher steroid levels additionally occupy GRs. Recent studies indicate that predominant MR occupation is important for the maintenance of ongoing transmission in certain brain regions and for neuroprotection. By contrast, additional GR occupation (for a limited period of time) results in an attenuation of local excitability; yet, prolonged exposure to high steroid levels may become an endangering condition for neurons. Since predominant MR occupation on the one hand and additional GR occupation on the other hand induce different cellular actions, the ratio of MR/GR occupation is an important factor determining the net effect of corticosteroid hormones in the brain. How coordinated MR- and GR-mediated effects control neuronal communication under various physiological and pathological conditions will be a challenge for future research.
منابع مشابه
Central mineralocorticoid receptors mediate impairing effects of corticosterone on memory retrieval in rats
Introduction: Previous studies have indicated that stress levels of glucocorticoid hormones induce impairment of long term memory retrieval, but the underlying mechanisms (genomic or non-genomic) are not clear. To clarify this issue, we investigated the involvement of brain corticosteroid receptors and protein synthesis in the glucocorticoid-induced impairment of memory retrieval. Methods: 140 ...
متن کاملLocalization of Mineralocorticoid Receptors at Mammalian Synapses
In the brain, membrane associated nongenomic steroid receptors can induce fast-acting responses to ion conductance and second messenger systems of neurons. Emerging data suggest that membrane associated glucocorticoid and mineralocorticoid receptors may directly regulate synaptic excitability during times of stress when adrenal hormones are elevated. As the key neuron signaling interface, the s...
متن کاملThe brain mineralocorticoid receptor: greedy for ligand, mysterious in function.
Glucocorticoids exert their regulatory effects on the hypothalamic-pituitary-adrenocortical axis via two types of corticosteroid receptors: the glucocorticoid receptor and the mineralocorticoid receptor. Whereas the glucocorticoid receptor has a broad distribution in the brain, highest levels of mineralocorticoid receptor are found in the hippocampus. Based on the differential occupancy profile...
متن کاملHormonal and monoamine signaling during reinforcement of hippocampal long-term potentiation and memory retrieval.
Recently it was shown that holeboard training can reinforce, i.e., transform early-LTP into late-LTP in the dentate gyrus during the initial formation of a long-term spatial reference memory in rats. The consolidation of LTP as well as of the reference memory was dependent on protein synthesis. We have now investigated the transmitter systems involved in this reinforcement and found that LTP-co...
متن کاملThe coming out of the brain mineralocorticoid receptor.
Corticosteroids - secreted after stress - have profound effects on brain and behavior. These effects are mediated by mineralocorticoid and glucocorticoid receptors, which are abundantly expressed in limbic neurons. The role of mineralocorticoid receptors in higher brain functions has never been well understood. Here we argue that the recently discovered low-affinity membrane version of the mine...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Progress in neurobiology
دوره 43 1 شماره
صفحات -
تاریخ انتشار 1994